If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+24x+8=0
a = -4.9; b = 24; c = +8;
Δ = b2-4ac
Δ = 242-4·(-4.9)·8
Δ = 732.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-\sqrt{732.8}}{2*-4.9}=\frac{-24-\sqrt{732.8}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+\sqrt{732.8}}{2*-4.9}=\frac{-24+\sqrt{732.8}}{-9.8} $
| (3x+1)(1-6x)-(3x+7)(3x+1)=0 | | 40w+200=28w+500 | | 2-3/3x=85 | | 2x+2=+7 | | (w+6)w=130 | | (4-5y)-2*(3.5y-8)=0 | | 2x•4x=90 | | 50/20=n/35 | | 2(4x+4)=104 | | 15+-4m=m | | v-84/5=2 | | 3n-7+n=17 | | 2x-6/10=3 | | 9+x^2=3^4 | | y-3=2y-3 | | 22.5x+180=40x-112.5 | | n/6-16=-5 | | 2,940/x=60 | | x^2=81-9 | | 1/2x-9=3x+4 | | 4.9q-3.4-5.2q=1.3q-2.2 | | 7r+2=3r+22 | | 8x=(6x-1)=2 | | 6x-38=82 | | 14=s-2 | | 2u+8=5 | | 5+8+3=2x+4 | | 5d-3.3=7. | | 2+4(2a+4)=2(3a+9)+7 | | 51=p•300 | | 9=3x+2x | | 3y-35=-5(y-9) |